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Abstract and under the influence of tune modulation, described b 

TEe standard analysis of modulational diffusion for general 
nonlinearities is qualitatively summarized, and compared 
to the particular case of a beam-beam simulation with two 
kicks per turn, plus tune modulation. A simulation with 
realistic Tevatron parameters shows amplitude growth over 
long timescales of order lo4 synchrotron periods. 

The simulated amplitude growth is qualitatively similar 
to the predictions of modulational diffusion, showing large 
discrete steps in the evolution speed as the tune distance 
from the nearest 2-D weak coupling resonance is varied. 
However, the simulation shows a fundamental difference 
in that the observed amplitude growth is approximately ex- 
ponential in time, and not approximately root time as pre- 
dicted in the standard analysis. Possible reasons for this 
and other discrepancies are briefly discussed. 

Qz = Q=o + qsin&Qd) (1) 

Hem t is time measured in machine turns, Qzo is the w- 
turbed horizontal base tune, q is the tune modulation de#, 
and QM is the tune modulation tune. Depending on tbt 
location in tune modulation parameter space (q, QM), tbc 
motion falls roughly into one of four dynamical phases - 
“chaos”, “strong sidebands”, “amplitude modulation”, oc 
“phase modulation” [ 12, 13, 141. 

1 MODULATIONAL’DIFF’USION 

Models of 1-D nonlinear motion in a hadron collider have 
times&es of hundreds of turns. When externally driven 
tune modulation is added, “‘thick layer” chaos may en- 
sue [ 1, 2, 31. If chaos is present in such a 1 S-D model, 
the typical timescale is of order a hundred modulation pe- 
riods. Synchrotron oscillations generate pseudo-external 
tune modulation, coupling through non-zero chromaticity. 
However, even a hundred synchrotron periods amount to 
only a few seconds, far shorter than the empirically ob- 
served timescales of the order of hours [4,5,6,7]. 
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Arnol’d “thin layer” diffusion occurs in 2-D models, 
with very long timescales of hundreds of millions of turns, 
turt it is generally conceded to be too weak to be a signifi- 
cant practical concern [8,9, 101. Of the classical catalog of 
diffusion mechanisms, only modulational “thick layer” dif- 
fusion in 2.5-D is strong enough and long enough in time 
scale to be a serious candidate for a successful description 
of the evohrtion of hadron collider bunch distributions. Un- 
fortunately, even modulational diffusion has serious defi- 
ciencies in explaining the basic features of very simple 2.5- 
D beam-beam simulations. 

Figure 1: Dynamical phases in the tune modulation pararn- 
eter plane (q, QM). for a resonance of order N = 5. 

A general “standard analysis” of modulational diffusion 
is well reported in the literature, complete with analytical 
ad quantitative results [9, 10, 111. These results are not 
discussed in detail here. Instead, the general characteristics 
d modulational diffusion are described, and the require- 
ments for its existence are summarized. 

The boundaries between these dynamical phases are 
smoothly drawn in Figure 1. In this figure both q and Q,w 
scale with the parameter &I, the “island tune” correspond- 
ing to small oscillations around the stable fixed point at the 
center of a resonance island. The straight line limits of the 
smooth boundaries in Figure 1 are consistent with Hamilto- 
man approximations which are valid when q and/or QM are 
incommensurate with &I. From left to right these straight 
line segments are 

($J(%) = b (2) 

(&)l” (g)314 = & (3) 

1.1 Thick layer chaos in 1.5-D 

First, consider nonlinear motion in only the horizontal di- 
mension, in the vicinity of a one-dimensional resonance, 

(4) 

where N is the order of the 1-D resonance. The curved 
portions of the boundaries are drawn with some artistic li- 

*Work performed under the auspices of the U.S. Department of Energy. 



case. To put it simply, dynamical stability is vulnerable to 
zme modulation tunes near to the island tune [ 151. 

Simulations show that, although the true boundaries 
hve a detailed complex structure, nonetheless the smooth 
boundaries are approximately correct [ 131. Most impor- 
ant of all, simulations confirm the universal dependence 
d the boundaries on only three configuration parameters: 
q/&r), (&M/Q~), and N. The details of the nonlinearity 
- its distribution and its source (beam-beam or magnetic) - 
&I not matter except through the island tune, &I. 
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Figure 2: The transition to “‘thick layer” chaos in horizontal 
#&se space when tune modulation is turned on in the pres- 
arce of a QZ = 3/5 resonance. These results come from a 
rinulation of the Tevatron with two beam-beam collisions 
dstrengtht = 0.0005,offset by Ax = 0.1~. 

A thick layer of bounded chaos is formed when the tune 
adulation parameters (q,QM) lie in the dynamical phase 
l&led “chaos” in Figure 1. This is illustrated in Figure 2. 
h typically takes a particle of order a hundred modulation 
pirriods to move all the way across the chaotic layer. 

The classical general model of modulational diffusion 
mquires a thick chaotic layer in (say) horizontal phase 
qce, to act as a noise source for the vertical motion. It 
r&o requires that the vertical motion is coupled to the hor- 
in&al through a weak 2-D coupling resonance. The stan- 
&rd analysis then proceeds by reducing the vertical motion 
SP a random walk in which a test particle tends to diffuse to 
lage vertical amplitudes. 

12 The modulational difision coeficient, D 

CIcirikov [ 11) and Lichtenberg and Lieberman [ 101 discuss 
a standard Hamiltonian for modulational diffusion 

H = f J,” - k cos[O, + X sin Rt] 

+ f$ - E cosp, - cl,] (5) 

&ere (5, 0) are the action-angle variables in each plane. 
Analogies are easily drawn between the parameters of this 
rsandard model and those appropriate to accelerators, if t in 
Equation 5 is interpreted as turn number. For example, k + 
\lkQ~)~ (resonance strength), X + (q/QM) (modulation 
srrength), and 0 + (27rQ~) (modulation frequency). 

The standard analysis predicts that motion scales as the 

square root of time, and defines a local diffusion coefficient 

D _ (AJ$ 
2T 

(6) 

where AJr, is the vertical action excursion and T is the 
elapsed time. The ensemble averaging should be performed 
over a time T short compared to the vertical diffusion 
time (so that A Jy / Jy is small) but long compared to the 
timescales of horizontal motion across the thick chaotic 
band (of order a hundred synchrotron periods). 
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Figure 3: Modulational diffusion resonance structure. The 
resonance separation is parameterized by CY, which is the 
horizontal tune distance A&= scaled by the primary reso- 
trance half width - the tune modulation depth q. 

It turns out that the diffusion coefficient D depends 
strongly on Q, the proximity of the weak 2-D resonance. 
The test particle has an instantaneous tune at “A? in Fig- 
ure 3, deep in a thick layer of horizontal chaos around a 
primary horizontal resonance which is fq wide. A single 
weak coupling resonance lies a distance AQZ away, a dis- 
tance which is measured in units of the primary resonance 
half width 

AQz 
a - = 

Q 

After a tour a2 force derivation including a number of as- 
sumptions and approximations, the standard analysis pre- 
dicts that D(cy) drops by about 16 orders of magnitude as 
a is increased from 0 to about 7, in a dramatic series of 
sudden descents at odd integer values of Q. 



The literature shows that there is good (although not per- 
fect) agreement between the analytical prediction for D( CX) 
and simulation results obtained by numerical integration of 
the differential equations of motion [lo, 11). One free pa- 
mmeter is adjusted to optimize the agreement. The pre- 
dicted “plateaux and cliffs” are clearly visible. 

Unfortunately this is not a realistic scenario for a hadron 
collider - not even a small fraction of a bunch population 
would (deliberately) be placed in the middle of a strong 
chaotic resonance! More relevant to long term collider be- 
havior is the scenario of a test particle at location “B” in 
Figure 3 - it is never possible for all of the bunch popula- 
tion to avoid all weak 2-D resonances. In this scenario the 
parameter Q would measure the proximity of the primary 
resonance, and mt the weak coupling resonance. Also it is 
often not realistic to assume that there are only two simple 
resonances in the tune vicinity of a test particle. 

Do the striking plateaux and cliffs in D(o) also oc- 
cur when discrete nonlinear maps representing turn-by-turn 
collider motion replace continuous differential equations? 

To answer this question, this paper turns to a simple real- 
istic model of beam-beam collisions in the Tevatron. How- 
ever, the question is valid for either magnetic or beam-beam 
nonlinearities. Note that the pmceding discussion of mod- 
ulational diffusion has been completely general, without 
specifying the particular source of the nonlinearity. 

2 BEAM-BEAMNONLINEARITIES 

The strong-weak beam-beam interaction is a good candi- 
date for a quantitative analysis of 2.5-D amplitude growth, 
because it is mathematically well behaved [ 161. In particu- 

The beam-beam kick goes like l/R at large ampli- 
tudes, so the tune shifts and the resonance strengths 
all go to zero. 

At all amplitudes the quantities of interest - the detun- 
ing, resonance strengths, island widths, and the island 
tunes, et cetera - are simply linear in the small quau- 
tity & the beam-beam tune shift parameter. 

Analytical expressions can be written for the quanti- 
ties of interest, at all amplitudes. 

None of these statements are true for magnetic nonlineari- 
ties. All of them am readily confirmed by tracking. 

As an example of the analytical tractability of the beam- 
beam interaction, consider the island tune on a primary 1 -D 
resonance due to a single head on beam-beam interaction. 
It is given by 

&I(J) = N< (IVN(J)I cqw2 (8) 

where the resonance order N is even, .I is the action at 
the resonance, VN(J) is the ?esonance width function”, 
and V”(J) is the second derivative of the function U(J) 

with respect to J. These two function are given, in turn. by 
integrating the following expressions 

V&I) = -(-l)+zxp ($) I&l/a (a> (9) 

V’(J) = ; [1-exp (%> IO ($1 (10) 

where IN/s and IO ate modified Bessel functions. 
The Hamiltonian which approximately describes the mo- 

tion near the Q = p/N beam-beam resonance is 

where QO is the base tune [ 161. It is straightforward to ex- 
tend this formalism to include include odd order resonances 
driven by (small) closed orbit offsets. It is also possible to 
extend the analytical description from 1 -D to 2-D, although 
not without some pain. 

3 A SIMPLE REALISTIC BEAM-BEAM 
SIMULATION 

There were two strong beam-beam interactions on evuy 
turn during the 1992 run of the Fermilab Tevatron - one at 
the CDF experiment and one at the DO experiment - each 
with a strength of 6 M 0.005 [ 171. Unwanted collisions at 
other locations were avoided by the use of electrostatic sep- 
arators. Typical operating parameters are listed in Table 1. 
The working point caused the tune footprint to lie between 
7th and 5th order resonances, straddling 12th order sum 
resonances, as shown in Figure 4. 

Quantity Label Value 

Base tunes &so, Qyo 20.586.20.575 
ChronXuicities x2, xy 3.0 
BMS momentum spread 5/P o.OtKl3 
Synchrotron tune QM 0.00078 
Beam-beam parameter < 0.005 

Table 1: Typical Tevatron operational parameters at 900 
GeV in the 1992 collider run. 

The weak-strong tracking program EVOL was used for 
all simulations [ 181. The beam-beam interactions assumed 
round Gaussian beams of transverse size u, so that the hor- 
izontal beam-beam kick was 

Ax’ = -4r‘t 2(z + AZ) 
r@ R2 1 (12) 

Here I and 2’ are the horizontal displacement and angle, 
p’ is the beta function at the interaction point (the same in 
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Figure 4: The tune plane for 1992 Tevatron parameters, 
showing the 5th, 7th, and 12th order resonances. The nom- 
inal working point is indicated by a cross, and the beam- 
beam footprint for i$ = 0.005 at two collisions is shown. 
Footprint contours of constant amplitude range from 0. la 
to 5.1~ in la increments. 

both planes), and R is the distance from the center of the 
opposing beam scaled to the beam size u 

R2 5 ((Z +CAz))2 + (5)’ (13) 

A similar kick was applied in the vertical plane. 

A small horizontal closed orbit offset of Ax = 0.10 
was included at the collision points, so the 5th order reso- 
nance QZ = 20.6 was driven directly. Although the actual 
value of this offset was not routinely measured during the 
1992 run, collision offsets of this magnitude were consid- 
ered quite possible. 

A tune modulation depth of q = 0 .OO 1 was used, present 
only in the horizontal plane, corresponding to a horizon- 
tal chromaticity of about 3 units combining with an off- 
momentum amplitude of Ap/p M 3 x 10m4, a realistic 
value for the Tevatron. 

4 SIMULATION RESULTS 

The maximum vertical amplitude was recorded for test 
particles launched with initial amplitudes (0%) uY) = 
(3.0,O. 1)~. for tracking times ranging from 10 to lo4 syn- 
chrotron periods [ 131. This is as long as a few minutes in 

Figure 5: Maximum vertical amplitudes of single particles 
with initial amplitudes (a,, at,) = (3.O,O.l)u, tracked for ^ ^ 

the Tevatron. 10, lo”, 10’ and 10’ syncbrotron periods. 

4.1 Tune plan scans 

First, a tune plane scan was performed over a mesh on the 
tune plane diagram of Figure 4, giving the results shown in 
Figure 5. The strongest vertical amplitude growth is seen 

20.62 

20.62 



near the intersection of the QY = Qz and Qz = 20.6 res- 
onances. Relatively modest growth is seen elsewhere, for 
example in the vicinity of the 3Q, + 2Qy = 103 resonance. 
The range of timescales observed is qualitatively consistent 
with that predicted for modulational diffusion. 

Vertical amplitude growth is almost completely absent 
with the tune modulation turned off (q = 0). except in the 
vicinity of the Qy = Qz linear coupling resonance. This is 
conclusive evidence that tune modulation drives amplitude 
growth on these timescales. 

Careful observation reveals that the resonances visible 
in Figure 5 are slightly displaced from their nominal loca- 
tions. This is due to the “detuning” of the instantaneous 
tunes (Qt , Qy) from the base tune values (QEO, QyO) used 
as axes in the figure. The size of the tune shift for a test 
particle with (a,, I+) M (3.0,O. 1)~ can be estimated from 
the tune footprint shown in Figure 4. 

Tune variation with amplitude is not included in the stan- 
dard modulational diffusion Hamiltonian of Equation 5. 
Also, the variation of resonance strength with both ampli- 
tudes, which is explicitly present in the beam-beam case, is 
not present in the modulational diffusion model. 

4.2 Primary resonance scan 

A second scan was performed by setting Qzc = 20.597, 
and decreasing the vertical base tune Qys to gradually in- 
crease a, the distance to the nearest coupling resonance. 
This value of Qzs places a test particle in the center of a 
thick layer of chaos surrounding the Qz = 20.6 resonance, 
a necessary condition for modulational diffusion predic- 
tions to apply. Note that the nearest coupling resonance 
4Qz + QY = 103 is not directly visible in Figure 5. 

Figure 6 shows the vertical amplitude evolution for 3 
quite different values of Q over times as long as 6 x lo3 
synchrotron periods. Tracking was stopped when the ver- 
tical amplitude reached 1 u, in order to avoid complicating 
the interpretation of the results with amplitude dependent 
effects. For each value of a the evolution is plotted, side 
by side, on both log-log and log-linear scales. The verti- 
cal amplitude clearly evolves like an exponential of time 

(% - exp yl), and not like root time (uY - t’j2) as pre- 
dicted by the standard modulational diffusion model, or by 
standard diffusion phenomenology. 

Figure 7 shows exponential growth rate data from simu- 
lations over a range of a values. In each case the exponen- 
tial growth rate y was extracted by fitting the the raw data 
to a curve 

av(t) = O.la ,-@lTS (14) 

where T, is the synchrotron period. ‘ILvo distinct plateaux 
are visible in Figure 7, separated by sudden drops at values 
a = 2 and a = 3, each of about 2 orders of magnitude. 
In contrast, the standard model predicts cliffs only at odd 
integer values of a. 

The growth rate 7 has natural units of inverse syn- 
chrotron periods, since the natural time unit is one mod- 
ulation period. It is therefore inappropriate to include data 

Q(yo) = 20.5906 a = 1 .a0 
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Figure 6: Exponential vertical amplitude growth for parti- 
cles launched within a horizontal chaotic band. The base 
tune is Qoo = 20.597 in all cases, so that the horizon- 
tal motion sits in the middle of the Q. = 20.6 resonance. 
Note the different timescales. 

sets with fast growth rates y > 1, limiting a to values larger 
than about 2. The maximum value of a M 4.5 is given by 
the availability of cpu time, and human patience. 

0.0 1.0 2.0 3.0 4.0 5.0 
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Figure 7: Exponential vertical amplitude growth rate y 
plotted versus the scaled distance a from the 4Qz + Qv = 
106 weak coupling resonance. 



5 CONCLUSIONS 

The analytical theory of modulational diffusion has been 
investigated by comparing its predictions with the results 
of a simple simulation of beam-beam behavior in the Teva- 
tron. The simulation contirms that particles subject to 
“thick layer” horizontal chaos on the Qz = 20.6 resonance 
experience a vertical amplitude growth over timescales of 
tens of thousands of synchrotron periods, or several min- 
utes. 

No particles sit in a chaotic layer around the &= = 20.6 
resonance under normal operating conditions in the Teva- 
tron. The strongest primary resonance which in practice 
might provide a noise source for modulational diffusion is 
12&, = 247. ‘lypical timescales observed in the Tevatron 
are on the order of hours. 

The rate of simulated vertical amplitude growth depends 
on the proximity of a nearby coupling resonance, and 
shows a structure of “plateaux and cliffs” similar to mod- 
ulational diffusion predictions. However, the growth is ex- 
ponential in time, and not root-time as predicted. 

Resonance strengths in the standard modulational diffu- 
sion model are not amplitude dependent. It has been sug- 
gested [19] that the exponential growth seen in the beam- 
beam simulation may be due to the variation of primary or 
coupling resonance strength as the vertical amplitude in- 
creases from 0.1~ to 1.0~. This seems unlikely, in the re- 
stricted range of horizontal and vertical amplitudes which 
were tracked, but it remains a viable possibility. 

The 2.5-D beam-beam interaction (with tune modula- 
tion) is analytically quite tractable, in addition to being a 
simple problem of practical concern. It may be possible 
to extend the standard analytical treatment of modulational 
diffusion to this case., and in doing so to include the impor- 
tant features of dehming, and resonance strength variation 
with amplitude. 

An even simpler 2.5-D collider model, that of 3 oc- 
tupoles plus 1 decapole, has already been used for other 
tune modulation studies [ 131. The octupoles are arranged 
to provide linear dettming with action without driving any 
resonances, while the decapole drives a resonance with no 
detuning. This model is more artificial than the beam-beam 
model, but it is also more tractable analytically (at modest 
amplitudes). It is also extremely fast in simulation. 

The arena of 2.5-D diffusion is ripe for further study, in 
an attempt to reconcile analytical predictions with simple 
simulations. The ideal simple simulation would bear some 
relevance to contemporary - and future - hadron collider 
performance. 
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